IL-10 (Interleukin-10) is a pleiotropic cytokine with important immunoregulatory functions whose actions influence activities of many of the cell-types in the immune system. It is a cytokine with potent anti-inflammatory properties, repressing the expression of inflammatory cytokines such as TNF-α (Tumor Necrosis Factor-α), IL-6 (Interleukin-6) and IL-1 (Interleukin-1) by activated macrophages. Functional IL-10R (IL-10 Receptor) complexes are tetramers consisting of two ligand-binding subunits (IL-10R-α or IL-10R1) and two accessory signaling subunits (IL-10R-β or IL-10R2). Binding of IL-10 to the extracellular domain of IL-10R1 activates phosphorylation of the receptor-associated, JAK1 (Janus Kinase-1) and TYK2 (Tyrosine Kinase-2), which are constitutively associated with IL-10R1 and IL-10R2, respectively. These kinases then phosphorylate specific tyrosine residues (Y446 and Y496) on the intracellular domain of the IL-10R1 chain. Once phosphorylated, these tyrosine residues (and their flanking peptide sequences) serve as temporary docking sites for the latent transcription factor, STAT3 (Signal Transducer and Activator of Transcription-3). STAT3 binds to these sites via its SH2 (Src Homology-2) domain, and is, in turn, tyrosine-phosphorylated by the receptor-associated JAKs. It then homodimerizes and translocates to the nucleus where it binds with high affinity to SBE (STAT-Binding Elements) in the promoters of various IL-10-responsive genes. Constitutively active forms of STAT3 increase transcription of anti-apoptotic and cell-cycle-progression genes such as BCLXL, Cyclin-D1, Cyclin-D2, Cyclin-D3, and Cyclin-A, Pim1, c-Myc and p19(INK4D) (Ref.1).

IL-10 has also been reported to activate another major survival pathway consisting of PI3K (Phosphoinositide-3 Kinase) and its downstream substrates p70S6K (p70 S6-kinase) and Akt/PKB (Protein Kinase-B). Although the anti-inflammatory effects of IL-10 are not mediated via PI3K, the ability of IL-10 to promote survival of astrocytes or to induce proliferation of mast cells depends upon the activation of PI3K (Ref.2).

IL-10 also interferes with the activation potential of the p38/MAPK (Mitogen-Activated Protein Kinase) pathway, which is required to activate TNF (Tumor Necrosis Factor) translation. IL-10-mediated signals primarily target TNF-mRNA translation. This process is clearly dependent on TNF-3'ARE. IL-10 leads to ARE-dependent destabilization of granulocyte–macrophage colony-stimulating factor, granulocyte colony-stimulating factor and KC cytokine mRNAs. Inhibition of p38/MAPK affects TNF-mRNA translation by inhibiting LPS (Lipopolysaccharide)-induced polysome coupling of TNF-mRNA in macrophages, without affecting TNF-mRNA accumulation. Similarly, the absence of MK2 leads to a profound reduction of LPS-induced TNF production, yet TNF-mRNA accumulation and stability are not affected. Thirdly, and most importantly, TTP (TNF-ARE Binding Protein Regulating-TNF Biosynthesis) exerts a potent destabilizing activity on TNF-mRNA without imposing translational control. Two RNA binding proteins that have recently been demonstrated to have TNF-ARE binding capacities are TiaR and Tia1 (Ref.3). The detailed mechanism by which IL-10 targets MAPK/SAPK (Stress-Activated Protein Kinase) signals is currently unknown. It is possible that IL-10 signaling interferes directly with the activation of MAPKs. There is evidence that points towards the requirement for JAK1/STAT3 in TNF suppression. Thus, one possibility would be that STAT3 activates factors capable of interfering with MAPK/SAPK signaling. One of the IL-10-responsive genes, SOCS3 (Suppressor of Cytokine Signaling-3) is a member of a newly identified family of genes that inhibit JAK/STAT-dependent signaling. Moreover, the ability of IL-10 to induce de novo synthesis of SOCS3 in monocytes correlates with its ability to inhibit expression of many genes in these cells, including endotoxin-inducible cytokines such as TNF-α and IL-1. Both STAT3 and SOCS3 can be activated by inflammatory stimuli like LPS and TNF and, most importantly, SOCS3 activation can also be induced by STAT3-independent mechanisms. In addition, LPS can synergize with IL-10 to prolong SOCS3 mRNA stability in myeloid cells. Therefore, early post-transcriptional mechanisms may provide a pool of SOCS3, which can be rapidly activated in the absence of de novo gene transcription. Consequently, SOCS3 transcription may allow for the replenishment of a SOCS3 pool to enforce its negative action in a temporal manner, thus showing p38/MAPK dependency of both STAT3 and SOCS3 for their activation as well as for the apparent capacity of SOCS3 to suppress STAT3 activation itself (Ref.4).

IL-10 is a potent inducer of HO1 (Heme Oxygenase-1) in murine primary macrophages and J774 cell line. The induction of HO1 occurs at transcriptional level, and is mediated via a p38 MAP-kinase–dependent pathway. HO1 is involved in the biosynthesis of heme, and catalyzes a reaction producing CO (Carbon-monoxide), free iron, and the heme precursor biliverdin. Inhibition of HO1 protein synthesis by antisense oligonucleotide significantly reversed the inhibitory effect of IL-10 on the production of TNF-α induced by LPS. HO1 induction is also essential for the suppressive effect of IL-10 on LPS-induced expression of inducible nitric oxide synthase as well as matrix metalloproteinase-9. CO derived from heme degradation by HO1 mediates the anti-inflammatory effect of IL-10 in macrophages. IL-10 also promotes growth and survival of cancer cells, including non-Hodgkin's lymphoma, Burkitt lymphoma and non-small cell lung cancer. Recently, IL-10 has been demonstrated to directly increase survival of both cortical and cerebellar granule neurons, astrocytes and progenitor as well as differentiated oligodendrocytes (Ref.5).

Tap the upper portion of screen
to return to the top of the page.